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Abstract
The magnetization, the Curie temperature, the local magnetic moment and
susceptibilities of Fe–Ni invar are calculated, using the first-principles density of
states and the dynamic non-local approximation of the spin-fluctuation theory.
A good agreement with experimental data over a wide range of temperatures,
including low temperatures, has been found.

1. Introduction

The invar problem has been the subject of many experimental and theoretical investigations
performed in the last decades (for a review see [1–4]). However, no general agreement on
the origin of the invar effect has been reached so far. One of the most commonly accepted
models is the 2γ -state model [5], which is supported by several band structure and total energy
calculations [6–8] and experimental investigations (see [9] and references therein). But in
recent papers [10–12] it is claimed that the interpretation of the invar effect on the basis of
the two-state model is incorrect. In [10, 11] this conclusion is drawn from the noncollinear
calculations of the ground-state properties of Fe–Ni invar at different volumes, in [12] from the
polarized neutron diffraction measurements. Today there is no direct experimental evidence for
the existence of high-moment and low-moment states for Fe in the Fe–Ni invar, and above all,
it is difficult to justify this hypothesis on the basis of the modern theory of metallic magnetism
(see, e.g. [13, 14]).

The modern approach to the invar problem, as well as to other problems connected with
thermodynamics of magnetic transition metals, is based on the spin-fluctuation theory (SFT).
The development of this theory goes in two directions. The first direction, that originates
from the paper [15], is the phenomenological SFT based on the Ginzburg–Landau expansion
of the free energy. For invars this approach has been developed in [16] and applied to Fe–
Ni alloy in the paper [17]. Unfortunately, the approach [15, 16] has been developed for
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weak itinerant ferromagnets [18] only and its suitability for Fe–Ni invar with large magnetic
moment and large Curie temperature is not well founded. The second direction is the single-site
approximation [19, 20] of the SFT applied to Fe–Ni alloys in [21, 22]. The calculations [21, 22]
are microscopic and based on the exact functional-integral method [23, 24]. However, in the
calculations [21, 22] a number of significant simplifications were made. In particular, the initial
density of states (DOS) was chosen in a simplified model form, and the two-field model of spin
fluctuations was used, which means a neglect of the vectorial nature of magnetic moment. Most
important, the calculations [21, 22] were performed in the static approximation, i.e. the spin
fluctuations were treated classically, while as is known the static approximation overestimates
the contribution due to spin fluctuations and yields an incorrect temperature dependence of the
magnetization, especially at low temperatures.

In the present paper, for the first time we use the dynamic non-local approximation (DNA)
of the SFT, developed in [25] and successfully applied to Fe, Co and Ni in [26–28], for
investigation of the temperature dependence of the magnetic properties of Fe–Ni invar. Our
approach is based on a self-consistent quadratic approximation for the free energy of electrons
in a random exchange field. The initial parameters of the calculation are the DOS and the
magnetic moment per atom at T = 0 for Fe–Ni invar.

2. Theoretical model

A method for self-consistent calculation of magnetic properties of ferromagnetic metals at
finite temperatures, based on the usage of real band structure and the DNA of the SFT, was
developed in [25]. Let us give the basic ideas of the method and present the final formulae
essential for an understanding of the results of our investigation.

Using Stratonovich–Hubbard transformation [23, 24], the pair interaction of electrons
characterized by the intratomic electron repulsion constant U is replaced by the interaction of
electrons with the exchange field V ≡ (V1, V2, . . .), Vj = V j(τ )τ , fluctuating in space and
in ‘time’ τ ∈ [0, 1/T ], where j is the site number, the τ are the Pauli matrices and T is the
temperature in energy units. (We neglect rapid charge fluctuations.) After this transformation
the grand partition function is written as

� =
∫

e−�0(V )/T e−�1(V )/T
∏

j

DV j (τ )

/∫
e−�0(V )/T

∏
j

DV j (τ ) (1)

where

�0(V ) = 1
2 Tr(V 2/U) (2)

is the energy of the random exchange field and

�1(V ) = T Tr ln G(V ) = T Tr ln[G0(1 − V G0)−1] (3)

is the grand potential expressed in terms of the single-particle Green function for electrons in
an external field V

G(V ) = (z + µ − H0 − V )−1. (4)

Here z is the energetic variable, which may take complex values; µ is the chemical potential;
H0 is the operator of the energy of the band electrons. Tr means summation of all diagonal
elements, the result of which is independent of the choice of the specific matrix representation.
The zeroth Green function G0 is defined by (4) with V = 0.

The matrices V and G0 cannot be diagonalized simultaneously either in coordinate or
in momentum spaces. For this reason, the formal exact expression (3) is inconvenient in
calculations and should be simplified.
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First we turn to the Helmholtz free energy of the electrons in a fluctuating field,
F(V ) = �(V )+µNe, where �(V ) = �0(V )+�1(V ) and Ne is the total number of electrons.
Taking into account (2) and (3), we have

F(V ) = T Tr

(
V 2

2U T
+ ln G(V )

)
+ µNe. (5)

Now we approximate this function by a quadratic form. For this purpose, we expand
F(V ) = F(〈V 〉 + �V ) in powers of the fluctuations �V to the second order and replace
the corresponding derivatives by their mean values [29], which leads to the closest quadratic
approximation

F(V ) �
∑
qnα

�V α
qn(U

−1 − χα
qn)�V α

−q−n (6)

where

χα
qn ≡ χα

q (iωn) = − 1
2 T Sp

∑
km

〈G(V )〉kmτα〈G(V )〉k−q,m−nτ
α (7)

is the unenhanced dynamic susceptibility (in units of g2µ2
B/2). The fluctuation of the exchange

field �V α (α = x, y, z) and the Green function G(V ) are written down here in the momentum–
‘frequency’ (qωn) representation. Sp means the sum of diagonal elements over the spin
projection index σ = ↑,↓ or ±1 and the mean is defined by the formulae

〈· · ·〉 =
∫

c(V ) · · · dV c(V ) = exp(−F(V )/T )

/ ∫
exp(−F(V )/T ) dV. (8)

Note that in the derivation of formulae (6) and (7), the expansion of the free energy F(〈V〉+�V )

is taken at 〈V 〉 determined from the condition that the linear term vanishes. In the quadratic
term, the Green function G(V ) is replaced by 〈G(V )〉. The unimportant constant value 〈F(V )〉
is discarded in the expansion.

We represent Green function (4) as

G(V ) = G(
)[1 − (�V − �
)G(
)]−1 (9)

where

G(
) = (z − H0 − 
)−1 (10)

is the mean Green function and �
 is the fluctuation contribution to the self-energy part,
determined from the relation 
 = 〈V 〉 + �
. Note that G(V ) is independent of 
, i.e.
equation (9) is satisfied for an arbitrary 
. Choosing 
 in the site- and frequency-diagonal
form 
i jnn′ = 
iiδi jδnn′ and replacing the function G(
) in the second factor of the right-
hand side of equation (9) by its site-diagonal part with elements gi j(
) = Gii (
)δi j , and also
neglecting a small change in the energy of the electron due to scattering by thermal fluctuations
(single-site quasi-static scattering approximation), instead of (9) we obtain

G(V ) � G(
)[1 − (�V − �
)g(
)]−1. (11)

In contrast to (9), here the function G(V ) depends on 
. Determining 
 from the condition
that the total free energy of the system is minimum, we obtain the coherent-potential theory
equation

�
 = 〈�V [1 − g(�V − �
)]−1〉. (12)

In the case of ferromagnets (and paramagnets), the self-energy part 
 and the mean single-site
Green function 〈G(V )〉ii � Gii (
) = g are independent of the site index i and spin (σ )
diagonal. According to (10),

gσ (ε) =
∫

ν(ε′)
ε − σ 〈Vz〉 − �
σ (ε) − ε′ dε′ (13)
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where ν(ε) is the non-magnetic DOS (per atom, band, and spin). From equation (12), for
the fluctuation contribution �
σ , in the second order of field fluctuations �V we obtain the
formula [30]

�
σ (ε) = gs
σ (ε)〈�V 2

z 〉
1 + 2σ 〈Vz〉gs

σ (ε)
+ 2gs

σ̄ (ε)〈�V 2
x 〉 (14)

where gs
σ (ε) is determined by expression (13) at �
σ (ε) = 0 and

〈�V 2
α 〉 = 1

Na

∑
qn

〈|�V α
qn|2〉 (15)

is the mean square of the fluctuation of the on-site exchange field (‘fluctuation’, for short).
In (15), Na is the number of atoms, α = x, z; the q summation is carried out over
the wavevectors within the Brillouin zone and the n summation is carried out over the
thermodynamic frequencies ωn = 2πnT .

Taking into account (8) and (6), for the temperature-dependent contribution to the
fluctuation 〈�V 2

α 〉 we obtain a simple analytic formula

〈�V 2
α 〉 = 1

Na

∑
q

U T

2Nλα
q

2

π
arctan

Uϕα
q π2T

6Nλα
q

(16)

where N (=5) is the number of d bands per atom and spin,

λα
q = 1 − Uχα

q (0) ϕα
q = d Im χα

q (ε)

dε

∣∣∣∣
ε=0

.

Deriving formula (16), we discarded the temperature-independent term, assuming that the
zero-point fluctuations are already taken into account in the initial DOS ν(ε) calculated by the
density-functional method and in the effective interaction constant U . Besides, we used an
expansion of the complex function χq(ε) at small thermal energies: χq(ε) = χq(0) + iϕqε.

The equations for the fluctuations 〈�V 2
α 〉, for the mean exchange field

〈Vz〉 = −Usz sz = (n↑ − n↓)/2 (17)

and chemical potential µ

ne = n↑ + n↓, (18)

where

nσ = 1

π

∫
Im gσ (ε) f (ε) dε (19)

is the number of electrons with spin projection σ and ne is the total number of electrons (per
atom, band), form a system of four non-linear equations ( f (ε) = [exp((ε − µ)/T ) + 1]−1 is
the Fermi function). At T = 0, the fluctuations 〈�V 2

α 〉 vanish, and this system turns into the
mean-field-theory system of equations (17) and (18). This gives one an opportunity to find the
effective constant U from a known magnetic moment m(0) = gµBsz(0); after that, at T 	= 0,
our initial system makes up a closed system with respect to the variables 〈�V 2

x 〉, 〈�V 2
z 〉, 〈Vz〉

and µ. This system is only slightly more complicated than the one obtained in the static local
approximation (SLA) [30]. In fact, taking account of dynamics and spatial correlations leads
to modification of the formula for the spin fluctuations 〈�V 2

α 〉 only. For the most part, the
simple computational scheme of the SLA remains unchanged.

Solving the system of dynamic non-local equations at a fixed temperature, we calculate
the mean DOSs νσ (ε, T ) = π−1 Im gσ (ε, T ), the magnetization m(T ) = gµBsz(T ), the mean
local magnetic moment

mL(T )/m(0) = [(〈Vz〉2(T ) + 〈(�V)2〉)/〈Vz〉2(0)]1/2, (20)
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Table 1. The ferromagnetic (TC) and paramagnetic (�C) Curie temperatures and the
effective (meff ) and mean local (mL(TC)) magnetic moments of Fe–Ni invar, calculated in two
approximations of the spin-fluctuation theory.

TC/T exp
C �C/T exp

C meff/mexp
eff mL(TC)/mL(0)

SLA 0.72 0.74 0.43 0.87
DNA 0.84 0.90 0.93 0.90

Table 2. Experimental values of fundamental magnetic characteristics of Fe65Ni35 invar.

mexp
0 (µB) [34] T exp

C /kB (K) [34] mexp
eff (µB) [35]

1.8 520 3.3

and the enhanced static uniform susceptibility χ̃0(0) = χ0(0)/(1 − Uχ0(0)). Comparing the
susceptibility N χ̃0(0) in the paramagnetic region with the Curie–Weiss law χ = m2

eff/(3(T −
�C)), we determine the value of the effective magnetic moment meff and the paramagnetic
Curie temperature �C.

Note that our model is written for the case of N degenerate bands. It is easily proved that,
in this case, one obtains the same equations as in the case of a single energy band with the only
difference that the temperature T is replaced by T/N . The details of the calculations of the
magnetic properties by the DNA of the SFT have been described in our papers [26, 27, 31].

3. Results and discussion

The invar effect occurs at a concentration around Fe65Ni35. Since order–disorder should not
play a crucial role (this can be seen from the example of Fe72Pt28 [3]), the ordered structure
Fe3Ni can represent the Fe–Ni invar. We take the initial non-magnetic DOS from ab initio
calculations for Fe3Ni [32] performed in the local-density approximation by the augmented-
spherical-wave method [33]. The constant sp background was eliminated from the initial
DOS per atom, so that the area under the curve was equal to 10 (the number of d states per
atom). Then the DOS was slightly smoothed out by convolution with the Lorentz function of
half-width � = 0.005W (W = 8.94 eV is the bandwidth) and normalized to one d band of
unit width:

∫ 1
0 ν(ε) dε = 1. With the help of smoothing we take into account the damping of

one-electron states resulting from electron–electron correlations. The smoothed DOS of the d
band ν(ε) used for calculation is represented in figure 1. The number of d electrons per atom
Ne = Nne = 2N

∫ εF

0 ν(ε) dε (εF is the Fermi energy) is equal to 7.84. The effective interaction
constant u = U/N determined from an experimental value of the magnetic moment per atom
mexp

0 = Nm(0) = 1.8 µB [34] is 1.34 eV. Note that applying the DOS of Fe3Ni for the Fe–Ni
invar, we also pursued a purely methodical objective to investigate the magnetic properties
of Fe–Ni invar in the same calculation scheme as we used earlier [26] for Fe and Ni, i.e. we
performed the calculations for Fe, Ni and Fe–Ni invar as far as possible in the same manner.
We emphasize that the ground state of Fe3Ni in the band calculations [32] is ferromagnetic.

The results of the calculation of the basic magnetic characteristics of Fe–Ni invar are
represented in table 1 and figures 2–4. All of the characteristics are represented in units of
their experimental values given in table 2.

Let us start from the SLA, in which expression (16) for fluctuations is replaced by

〈�V 2
α 〉SL = U T

2Nλα
L

λα
L = 1 − UχL(0) (21)
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Figure 1. The DOS of the d band of non-magnetic Fe3Ni, obtained from [32] (——), and the
one smoothed out by convolution with the Lorentz function of half-width � = 0.005 (– – –). The
energy ε and half-width � are in units of the bandwidth W = 8.94 eV. The vertical line indicates
the position of the Fermi level εF.
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T/T
exp

C

Figure 2. The magnetization m(T )/m(0) (—— calculation, + + + experiment [34]), the mean
square of fluctuations of the on-site exchange field 〈�V 2

x 〉 (- - - -) and 〈�V 2
z 〉 (– – –) in units of the

mean square of the exchange field at T = 0, the inverse paramagnetic susceptibility (N χ̃0(0))−1

(— · —) in units of T exp
C /µ2

B, and the mean local magnetic moment mL(T )/mL(0) (· · · · · ·) of
Fe–Ni invar, calculated in the SLA as functions of the reduced temperature T/T exp

C .

where χL(0) = N−1
a

∑
q χq(0) is the local susceptibility. As can be seen from figure 2,

the magnetization m(T ) decreases too fast and the Curie temperature is much less than
the experimentally observed one, TC = 0.72T exp

C . Moreover, a noticeable decrease of
magnetization, ∝T , is seen at low temperatures, which is due to the fact that spin fluctuations
increase linearly with temperature (see (21)). In general, the paramagnetic susceptibility
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Figure 3. As figure 2, but calculated in the DNA.
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Figure 4. Spin-polarized DOSs of Fe–Ni invar at T/T exp
C = 0 (——), 0.4 (– – –), and 0.84 (- - - -),

calculated in the DNA. The energy ε is given in units of the bandwidth W . The vertical line indicates
the position of the chemical potential µ.

follows the Curie–Weiss law, but the effective magnetic moment meff is only 0.43 of its
experimental value. The paramagnetic Curie point �C, obtained by the linear extrapolation
of χ̃−1(T ) to zero, is a little greater than the ferromagnetic one as it must be. Note that the
linear decrease of the magnetization at low temperatures and a small effective moment in the
paramagnetic region are common shortcomings of the calculations performed in the static
approximation (see, e.g. [26] and references therein).

In the DNA the fluctuations 〈�V 2
α 〉DN, calculated using formula (16), at low temperatures

increase slowly (∝T 2) with increasing temperature. For this reason, at low temperatures the
magnetization is proportional to T 2, which provides a good agreement with the experimental
curve in the initial region (figure 3). The Curie temperature TC obtained is equal to 0.84T exp

C .
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The paramagnetic susceptibility follows the Curie–Weiss law and the effective magnetic
moment is a little less than the experimental one: meff = 0.93mexp

eff . The paramagnetic Curie
point �C is a little greater than TC.

As can be seen from figure 3, the local magnetic moment mL(T )/mL(0) calculated by
formula (20) depends not too strongly on the temperature: with temperature increasing from
zero to T exp

C the local moment decreases by 10% only. However, in comparison with Fe, where
the local moment on the same temperature interval remains almost constant [26], this change
is considerable and quite sufficient for an explanation of the invar effect. The assumption that
the volume change of the Fe–Ni invars is connected with the temperature variation of the local
moment, and not the magnetization, was first made in [36] from an analysis of the experimental
data. The subsequent SFT calculations [21, 22] confirmed this assumption.

Note that in the SFT for weakly ferromagnetic metals the decrease of the local moment
at TC reaches ∼23% (η(TC) = m2

L(TC)/m2
L(0) = 0.6) [37]. Using η(TC) ∼ 0.5 and roughly

estimating D0/B � 10−6 (emu/g)−2 in approximate equation (5) of [37] for the magnetic
volume change ωm in the weakly ferromagnetic limit,

ωm(T ) = D0

B
M2

0 [η(T ) − 1] (22)

where D0 is the magneto-volume coupling constant for q = 0, B is the bulk modulus and
M0 is the uniform magnetization per atom at T = 0 K, for Fe65Ni35 the authors of [37]
got ωm(300 K) � −0.008 in good agreement with the value deduced from experiment.
However, from the preliminary calculation [37] it is not evident at all that in Fe–Ni invar
such a large decrease of the local moment does occur. The fact is that the value of ωm

strongly depends on details of the calculation. So, using our η = (0.9)2 and D0/B �
(2–3)×10−6 (emu/g)−2 obtained in [37] by the theoretical estimation of the D0, for Fe65Ni35,
which has M0 � 170 emu g−1 [3], from the same equation (22) we obtain ωm(TC) = −0.011 to
−0.016 also in good agreement with the results of the measurements [38]. In more exact SFT
calculation [21] for Fe0.6Ni0.4, ωm(TC) = −0.06 is obtained, which is too large compared with
the experimental value −0.0136 [38]. Since in our calculation the local moment decreases
noticeably more slowly than that in [21], for ωm in the DNA of the SFT one can expect
a better agreement with experiment. Our small decrease of the local moment at the Curie
temperature is also supported by the ratio of the experimental values ωm(TC) for Fe65Ni35 and
Fe: −0.0190 and −0.0014, respectively, [39]. Finally, the assumption that in the single-site
approximation [19, 20] the decrease of the local moment and hence the value of the magnetic
volume change is overestimated was stated in [21, 40], where direct calculations ωm(TC) for
Fe gave values −0.04 [21] and −0.03 [40], which is noticeably less than is obtained within the
Stoner theory, but still much more than is observed experimentally. In [39] it is claimed that
the reduction of the local moment of Fe at TC must be only 1% in order to obtain a reasonable
value of ωm.

Since the local moment is the most important physical parameter in the invar problem,
we emphasize that our 10% decrease is comparable to the 7% decrease obtained in SFT
calculations [41]. Unfortunately there are no reliable experimental data on the temperature
variation of the local moment. However, making a reasonable assumption that the local moment
is a linear function of the atomic volume, from [42, 43] we see that the atomic volume change
is significantly smaller (2%–3%) than was predicted in the commonly cited paper [8]. The
authors of [8] find that a magnetization collapse is accompanied by a reduction of the atomic
volume of ∼9%. (Their calculated lattice constant contraction is 3% as compared to the
0.7%–1% experimentally obtained in [42, 43].)

Figure 4 shows the mean DOSs νσ (ε, T ) at zero, half Curie (T = 0.4T exp
C ) and

Curie (TC = 0.84T exp
C ) temperatures. In contrast to the mean-field-theory results, as the
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Figure 5. The magnetization of Fe–Ni invar at low temperatures, calculated in the mean-field
approximation (- - - -), SLA (– – –) and DNA (——). The crosses represent the experimental
data [44] and diamonds represent the experimental data [34].

temperature increases, the functions ν↑(ε, T ) and ν↓(ε, T ), shifting toward each other, become
noticeably smoothed.

Now we dwell on the temperature dependenceof magnetization m(T ) at low temperatures,
which is still an unsolved problem in the invar theory. The observed m(T ) with increasing
temperature decreases much faster than would be expected from magnon excitations [44].
Some authors [44] explain the additional decrease of magnetization by unknown hidden
excitations, others [45] by Stoner-type excitations. For explanation of the temperature
behaviour of m(T) in the framework of recent theory,we calculate in detail the magnetization of
the Fe–Ni invar at low temperatures in the mean-field approximation (〈�V 2

x 〉MF = 〈�V 2
z 〉MF =

0) and in two approximations of the SFT. As can be seen from figure 5, at low temperatures
the contribution of Stoner excitations in the decreasing of m(T ) is negligible. In the SLA
the magnetization decreases too fast (∝T ). Only in the DNA, in the case where the spin
fluctuations are proportional to T 2, a good agreement with the experimental data is obtained
for the calculated m(T ).

4. Conclusion

Our numerical calculations of the magnetic properties of Fe–Ni invar demonstrate that the static
approximation of the SFT overestimates the contribution due to spin fluctuations and yields an
incorrect temperature dependence of the magnetization and susceptibility. Only simultaneous
consideration of the dynamics and non-locality of the spin fluctuations ensures agreement of
the theory with experiment.

Note that a success of our spin-fluctuation approach in the region of intermediate
temperatures, where the single-site approximation is most appropriate, is not surprising. What
is surprising is a good agreement of our calculations with experiment at low temperatures,
where one would think the spin-wave approach (SWA) is preferable. Recall that in our model
the short-range magnetic order is taken into account in the derivation of formula (16) for
spin fluctuations only. This shortcoming seems to be not so substantial as the neglect of the
longitudinal fluctuations in the SWA.
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Finally, though the use of the ordered Fe3Ni DOS as the initial one for the purposes of the
first dynamic non-local calculation is justified, in the future we intend to investigate the effect
of randomness in the spatial arrangement of Fe and Ni atoms [41, 46–48] on the magnetic
properties of the Fe–Ni invar at finite temperatures.
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